Weighing the merits of solar power plants using concentration photovoltaics

Published: March 1, 2012

By Geoffrey S. Kinsey, Senior Director of Research and Development, Amonix

In trying to introduce its relatively new technology to traditional utility customers, the photovoltaic industry often finds itself in the awkward position of trying to sell a product to a customer who may not want to buy. The up-front capital costs of new solar plants (that deliver power only intermittently) can be less than appealing. Large-scale grid integration will therefore be accelerated by PV technologies that best fit the profile of traditional power sources. In addition to low cost, this includes high capacity factors and the ability to better match demand during daylight hours.
Concentrator photovoltaic (CPV) power plants are now being integrated into the grid at megawatt scales. By performing light collection using acrylic, silicone, or glass optics instead of semiconductors, the material cost balance of PV is fundamentally shifted. The world’s most efficient solar cells can then be employed, and maintaining tracking of the sun becomes economically favorable across vast sunny locales worldwide. With AC system efficiencies in excess of 25%, the resulting CPV power plants produce high energy yields throughout the year and deliver the high capacity factors demanded by utility customers. Since semiconductors are a minority component cost, manufacturing capital costs are lower than for any other PV technology, allowing for rapid scale-up and field deployment. This article will describe the state of the art of CPV technology, field performance results, and the outlook for near-term deployments.

Single Paper

Includes one paper digital access
US$ 21

Photovoltaics International SubscriptionDigital & Archive

Includes 12 months of unlimited digital access to the Photovoltaics International content, full online archive, technical paper collection (over 700), and more.

Includes 2 upcoming issues in digital.

US$ 449 per year

This Website Uses Cookies

By continuing browsing this website you are accepting our Cookie Policy, as well as our Terms of Use and Privacy Policy.