Understanding the energy yield of PV modules

Published: June 16, 2017

By Markus Schweiger, Markus Schweiger received the diploma in electrical engineering from the Technical University of Munich and is currently pursuing his doctorate degree in photovoltaics at the RWTH Aachen University. Since 2009 he has been working as a scientist and project engineer in the Solar Innovation Department at TÜV Rheinland.; Werner Herrmann, Werner Herrmann studied physics at the Technical University of Aachen and holds a PhD in PV power characterisation with solar simulators. Since 1988 he has been working at TÜV Rheinland, and has gained more than 20 years’ experience in developing standards for the PV industry.; Christos Monokroussos, Christos Monokroussos is a technical expert for TÜV Rheinland, where his activities focus on R&D, characterisation of solar cells and PV modules, quality control of measurement systems, standardisation progress and PV module reliability.; Uwe Rau, Uwe Rau studied physics at the University of Tübingen, Germany, and at Claude Bernard University Lyon, France. He received his diploma in 1987 and his Ph.D. in 1991 in physics from the University of Tübingen, and also earned his habilitation degree in experimental physics in 2002 from the University of Oldenburg, Germany. Since 2007 he has been the director of the Institute for Energy and Climate Research at Forschungszentrum Jülich, and is a professor at RWTH Aachen University, Germany

Module yield | Varying climatic conditions across markets and the individual characteristics of PV technologies undermine accurate predictions of module energy yield using conventional methods. Markus Schweiger, Werner Herrmann, Christos Monokroussos and Uwe Rau describe how a calculation of module performance ratio can be used to accurately assess the efficiency of different PV module technologies in different climates and thus the likely return on investment from a project.

Single Paper

Includes one paper digital access
US$ 5

PV Tech Power SubscriptionPrint, Digital & Archive

Includes 12 months of unlimited digital access to the PV Tech Power content, full online archive, technical paper collection (over 400), and more.

Includes 4 upcoming issues in print.

US$ 180 per year
Buy now and

This Website Uses Cookies

By continuing browsing this website you are accepting our Cookie Policy, as well as our Terms of Use and Privacy Policy.