The status and future of industrial n-type silicon solar cells

Published: September 26, 2013

By Joris Libal, Research Engineer, ISC Konstanz; Radovan Kopecek, Leader of the Advanced Solar Cells Department, ISC Konstanz

According to the ITRPV (International Roadmap for PV), a large fraction of future solar cells will be n-type and rear-contact cells with the highest efficiencies and fabricated using low-cost processes. As the standard p-type silicon solar cell in mass production is completely optimized and has therefore reached its cost limit, it is currently very difficult for new solar cell concepts to be cost effective from the outset when introduced into production. Consequently, in the current market situation, the introduction of new solar cell concepts to the market is not straightforward. The only way to achieve this is to use the fully adapted standard processes employed in today's manufacturing lines and only upgrade them with a few industrially approved process steps – such as laser ablation and boron diffusion – in order to implement low-cost device structures with stable efficiencies well above 20%. This paper gives an overview of n-type cell concepts already present on the market and of promising technologies ready for pilot production; the latter were summarized and discussed at the 3rd nPV workshop in April 2013 in Chambéry, France. The consequences for module manufacturing, as well as for measurement techniques and for requirements in respect of new standardization for cell and module characterization, will also be discussed..

Single Paper

Includes one paper digital access
US$ 21

Photovoltaics International SubscriptionDigital & Archive

Includes 12 months of unlimited digital access to the Photovoltaics International content, full online archive, technical paper collection (over 700), and more.

Includes 2 upcoming issues in digital.

US$ 449 per year

This Website Uses Cookies

By continuing browsing this website you are accepting our Cookie Policy, as well as our Terms of Use and Privacy Policy.