Performance characterization and superior energy yield of First Solar PV power plants in high-temperature conditions

Published: September 13, 2012

By N. Strevel, Technical Sales Engineer, First Solar; L. Trippel, Module Product Line Director, First Solar; M. Gloeckler, Vice President of Advanced Research, First Solar

Like all semiconductor photovoltaic devices, cadmium telluride (CdTe) modules have a characteristic response to temperature changes. This paper describes the effects of the temperature coefficient of power, using operational system data to quantify the First Solar CdTe technology energy-yield advantage over typical crystalline silicon technology in high-temperature conditions. This paper also describes the underlying mechanisms of initial stabilization and longterm degradation that influence module efficiency. The processes used to characterize and rate module power output, given these effects, are further discussed. First Solar’s significant experience in building and operating power plants in high-temperature conditions, along with associated system performance data and accelerated lab test data, is reviewed to substantiate the warranty considerations and long-term capability of power plants using CdTe PV modules.

Single Paper

Includes one paper digital access
US$ 21

Photovoltaics International SubscriptionDigital & Archive

Includes 12 months of unlimited digital access to the Photovoltaics International content, full online archive, technical paper collection (over 700), and more.

Includes 2 upcoming issues in digital.

US$ 449 per year

This Website Uses Cookies

By continuing browsing this website you are accepting our Cookie Policy, as well as our Terms of Use and Privacy Policy.