Opps!! You didn't choose any image for magnifying action

Cu-plated electrodes with laser contact opening on n-type crystalline silicon solar cells

Published: January 3, 2017

By Kuang-Chieh Lai, Yueh-Lin Lee, Ming-Shiou Lin, Chia-Chih Chuang, Chi-Chun Li & Chien-Chun Wang,, Motech Industries, Inc., Tainan, Taiwan

This paper presents the fabrication of front-junction n-type silicon solar cells with Cu-plated electrodes, using laser contact opening and forward-bias plating. The cells feature a back-surface field formed by a phosphorus implant, and a diffused boron emitter with aluminium oxide passivation. Laser ablation of the front-side dielectric layers is followed by a metallization based on Ni/Cu forward-bias plating, while sintered metal paste is used for the rear electrode. The results show improved line conductivity and contact resistivity for the plated electrode, leading to higher solar cell efficiency than for cells made with conventional Ag/Al paste. On 6" n-type Czochralski wafers, cell efficiencies of up to 21.3% have been demonstrated, with an open-circuit voltage of 654mV, a short-circuit current of 40.8mA/cm2 and a fill factor of 79.8%.

Single Paper

Includes one paper digital access
US$ 21

Photovoltaics International SubscriptionDigital & Archive

Includes 12 months of unlimited digital access to the Photovoltaics International content, full online archive, technical paper collection (over 700), and more.

Includes 2 upcoming issues in digital.

US$ 449 per year

This Website Uses Cookies

By continuing browsing this website you are accepting our Cookie Policy, as well as our Terms of Use and Privacy Policy.