Beyond boron–oxygen deactivation: Industrially feasible LID-free p-type Czochralski silicon

Published: March 5, 2019

By Bianca Lim; Agnes Merkle; Robby Peibst; Thorsten Dullweber; Yichun Wang; Rui Zhou

Today’s industry-standard B-doped monocrystalline silicon still suffers from light-induced degradation (LID) of the carrier lifetime. Illumination at elevated temperatures leads to a so-called regeneration, i.e. a recovery of both the carrier lifetime and the solar cell efficiency. However, even though the carrier lifetime on test wafers increases from about 1ms after processing to 3ms after regeneration, the corresponding PERC+ cell efficiencies in both states are identical; possible reasons for this discrepancy are discussed in this paper.

Single Paper

Includes one paper digital access
US$ 21

Photovoltaics International SubscriptionDigital & Archive

Includes 12 months of unlimited digital access to the Photovoltaics International content, full online archive, technical paper collection (over 700), and more.

Includes 2 upcoming issues in digital.

US$ 449 per year

This Website Uses Cookies

By continuing browsing this website you are accepting our Cookie Policy, as well as our Terms of Use and Privacy Policy.